

INSTITUCIÓN EDUCATIVA FEDERICO SIERRA ARANGO

Resoluciones Dptales. 15814 de 30/10/2002 - 9495 de 3/12/2001 NIT: 811039779-1 DANE: 105088001750

MOVIMIENTO PERIÓDICO Y MOVIMIENTO ARMÓNICO SIMPLE						
ASIGNATURA: Física	GRADO: 11°	FECHA: Febrero 8 al 19				
TEMAS: Movimiento Periódico y Movimiento Armónico Simple						
DOCENTE: Lina Marcela Mosquera Martínez		SEMANAS: 3 y 4				
ODCEDVA CIONEC.						

OBSERVACIONES:

- Enviar a través de la plataforma de CLASSROOM.
- ✓ Enlace para clases → https://meet.google.com/lookup/gnns3s2zks?authuser=4&hs=179
- Código de la clase 11-1: 5fb7bet, código de la clase 11-2: 3if6n2d
- ✓ El plazo máximo es hasta el día 19 de febrero.

A TENER EN CUENTA

	Periodo en función de la velocidad angular $2\pi \ rad$	Ecuación del movimiento $x = Acos(\omega t)$		
$\frac{\text{Unidades}}{\frac{rev}{s}} = Hz$	$T = \frac{2\pi T \alpha \alpha}{\omega}$	Ecuación de la velocidad $v = -A\omega sen(\omega t)$		
3	Frecuencia			
	$f = \frac{n}{t}$	Ecuación de la aceleración $a = -\omega^2 A cos(\omega t)$		

EJEMPLOS			EJERCICIOS	
	(explicados por la profesora)		(resueltos por los estudiantes)	
	Movimiento periódico		Movimiento periódico	
1.	Un taladro eléctrico gira a 3000 rev/min. ¿A cuántos Hz equivale este valor?	1.	Un taladro eléctrico gira a 4000 rev/min. ¿A cuántos Hz equivale este valor?	
2.	Calcular el periodo de oscilación de un movimiento periódico cuya velocidad angular es $4\ rad/s$	2.	Calcular el periodo de oscilación de un movimiento periódico cuya velocidad angular es $5\ rad/s$	
	Movimiento Armónico Simple		Movimiento Armónico Simple	

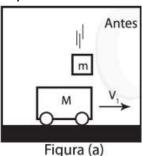
3. Calcular amplitud, frecuencia angular, velocidad y aceleración en función del tiempo, para una partícula que oscila con un movimiento armónico simple, si la posición varía en función del tiempo de acuerdo con la ecuación $x = 0.20cos(\pi t)$, donde x está dado en metros, t en segundos y ω en $\frac{rad}{s}$.

3. Calcular amplitud, frecuencia angular, velocidad y aceleración en función del tiempo, para una partícula que oscila con un movimiento armónico simple, si la posición varía en función del tiempo de acuerdo con la ecuación $x = 0.40cos(\pi t)$, donde x está dado en metros, t en segundos y ω en $\frac{rad}{s}$.

INSTITUCIÓN EDUCATIVA FEDERICO SIERRA ARANGO

Resoluciones Dptales. 15814 de 30/10/2002 - 9495 de 3/12/2001

NIT: 811039779-1 DANE: 105088001750



- **4.** Calcular la coordenada de posición o elongación, velocidad y aceleración en el instante $t=\frac{T}{2}$, para un sistema con movimiento armónico simple cuya posición en función del tiempo está dada por x=4cos(2t), con x expresado en cm.
- **4.** Calcular la coordenada de posición o elongación, velocidad y aceleración en el instante $t=\frac{T}{3}$, para un sistema con movimiento armónico simple cuya posición en función del tiempo está dada por x=6cos(3t), con x expresado en cm.

¿Qué responderías?

Un carro de masa \mathbf{M} , se mueve sobre una superficie horizontal con velocidad V_1 en la dirección que ilustra la figura (a). En cierto instante un objeto de masa \mathbf{m} que se mueve perpendicular a la superficie, cae en el interior del carro y continúan moviéndose los dos como se muestra en la figura (b). Desprecie el rozamiento entre la superficie de la carretera y el carro.

Después

V=?

Figura (b)

La rapidez del carro después de que el bloque cae dentro de él

- A. disminuye porque la cantidad de masa que se desplaza horizontalmente aumenta.
- B. aumenta porque durante el choque el carro adquiere la velocidad del objeto que cae.
- C. aumenta porque al caer el objeto le da un impulso adicional al correo.
- D. no cambia porque el momentum del objeto es perpendicular a la del carro.